Math 54 Cheat Sheet

Vector spaces

```
Subspace: If u and v are in W, then u+v vare in }W\mathrm{ , and }c\mathbf{u}\mathrm{ is in }
```



```
contain the pivots.
that contain the pivots
that contain the pivots
Rank-Nullity theorem: }\operatorname{Rank}(A)+\operatorname{dim}(Nul(A))=n\mathrm{ , where }A\mathrm{ is
# m\timesn m
where cis a numbe
T
T
```



```
*)
Cinear dependence:: }\mp@subsup{a}{1}{}\mp@subsup{\mathbf{v}}{1}{}+\mp@subsup{a}{2}{}\mp@subsup{v}{2}{
Span: Set of linear combinations of v}\mp@subsup{\mathbf{v}}{\mathbf{1}}{\prime},\cdots\mp@subsup{\mathbf{v}}{\mathbf{n}}{
Basis \mathcal{B for V:A linearly independent set such that Span (\mathcal{B})=V}=V,
To show sthg is a basis, show it i s linearly independent and spans.
To find a basis from a collection of vectors, form the matrix }A\mathrm{ of the vectors, and find
Col(A).
mbination
combination of 'simpler' vectors. Then show those vectors form a basis.
Dimension: Number of elements in a basis.
To find dim, find a basis and find num. elts. 
Basis theorem: If V is an n-dim v.s,, then any lin. ind. set with n elements is a basis,
and any set of n elts. which spans V}\mathrm{ is a basis.
Matrix of a lin trans T}\mathrm{ with respect to bases }\mathcal{B}\mathrm{ ad }\mathcal{C}\mathrm{ . For very vector }\mathbf{V
Matrrix of a lin. transf T with respect to bases \mathcal{B and \mathcal{C}}\mathrm{ For every vector vin i }\mathcal{B}
```



```
cocticie
Curdinates: To find [\mathbf{x}\mp@subsup{]}{\mathcal{B}}{~}\mathrm{ , express }\mathbf{x}\mathrm{ in terms of the vectors in }\mathcal{B}\mathrm{ .}
```



```
#nvertible matrix theorem: If A is invertible, then: }A\mathrm{ is row-quivalent to I, }I\mathrm{ , has n
pivots,T(\mathbf{x})=A\mathbf{x}\mathrm{ is one-to-one and onto,, Ax = b has a unique solution for}
every b, AT
ul(A)={0},Rank(A)=n
[ ac
[A| I] ->[[\begin{array}{ll}{I|}&{\mp@subsup{A}{}{-1}}\end{array}]
Change of basis: [x]
Change of basis: [\mathbf{x}\mp@subsup{]}{\mathcal{C}}{C}}=\mp@subsup{P}{\mathcal{C}}{(
```


Diagonalization

Diagonalizability: A is diagonalizable if $A=P D P^{-1}$ for some diagonal D and
A and B are similar if $A=P B P^{-1}$ for P invertible
Theorem: A is diagonalizable $\Leftrightarrow A$ has n linearly inder
Theorem: A is diagonalizable $\Leftrightarrow A$ has n linearly independent eigenvectors
Theorem: IF A has n distinct eigenvalues. THEN A is diagonalizable, but the onalizable, but the opposite Notes: A can be diagonalizable even if it's not invertible (Ex: $A=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$). Not all matrices are diagonalizable (Ex: $\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$),
Consequence: $A=P D P^{-1} \Rightarrow A^{n}=P D^{n} P^{-1}$
$\frac{\text { How to diagonalize: }}{\text { roots of that. }}$ find the eigenvalues, calculate $\operatorname{det}(A-\lambda I)$, and find the

To find the eigenvectors, for each λ find a basis for $N u l(A-\lambda I)$, which you do
竍
Sse this to guess zeros of p. Once you have a zero that works, use long division! Then
$A=P D P^{-1}$, where $D=$ diagonal matrix of eigenvalues, $P=$ matrix of genvectors
Complex eigenvalues if $\lambda=a+b i$, and \mathbf{v} is an eigenvector, then
$A=P C P^{-1}$, where $P=\left[\begin{array}{ll}\operatorname{Re}(\mathbf{v}) & \operatorname{Im}(\mathbf{v})], C=\left[\begin{array}{cc}a & b \\ -b & a\end{array}\right]\end{array}\right.$.
C is a scaling of $\sqrt{\operatorname{det}(A)}$ followed by a rotation by θ, where:
$\frac{1}{\sqrt{\operatorname{det}(A)}} C=\left[\begin{array}{cc}\cos (\theta) & \sin (\theta) \\ -\sin (\theta) & \cos (\theta)\end{array}\right]$

Orthogonality

$\sqrt{u} \|=\sqrt{\mathbf{u} \cdot \mathbf{u}}$
$\left\{\mathbf{u}_{\mathbf{1}} \cdots \cdot \mathbf{u}_{\mathbf{n}}\right\}$ is orthogonal if $\mathbf{u}_{\mathbf{i}} \cdot \mathbf{u}_{\mathbf{j}}=0$ if $i \neq j$, orthonormal if
$\left\{\mathbf{u}_{\mathbf{1}} \ldots \mathbf{u}_{\mathbf{n}}\right\}$ is orthogonal if $\mathbf{u}_{\mathbf{i}} \cdot \mathbf{u}_{\mathbf{j}}=0$ if i
$\mathbf{u}_{\mathbf{i}} \cdot \mathbf{u}_{\mathbf{i}}=1$
W_{1}^{\perp} Set of \mathbf{v} which are orthogonal to every \mathbf{w} in W
W^{-}: Set of \mathbf{v} which are orthogonal to every \mathbf{w} in
If $\left\{\mathbf{u}_{\mathbf{1}} \cdots \mathbf{u}_{\mathbf{n}}\right\}$ is an orthogonal basis, then:
$\mathbf{y}=c_{1} \mathbf{u}_{\mathbf{1}}+\cdots c_{n} \mathbf{u}_{\mathbf{n}} \Rightarrow c_{j}=\frac{\mathbf{y} \cdot \mathbf{u}_{\mathbf{j}}}{\mathbf{u}_{\mathbf{j}} \cdot \mathbf{u}_{\mathbf{j}}}$
Orthogonal matrix Q has orthonormal columns! Consequence: $Q^{T} Q=I$
$\begin{aligned} Q Q^{T} & =\text { Orthogonal projection on } \operatorname{Col}(Q) . \\ (Q \mathbf{x} \| & =\|\mathbf{x}\|\end{aligned}$
$\|Q \mathbf{x}\|=\|\mathbf{x}\|$
$(Q \mathbf{x}) \cdot(Q \mathbf{y})=x$
Orthogonal projection: If $\left\{\mathbf{u}_{\mathbf{1}} \cdots \mathbf{u}_{\mathbf{k}}\right\}$ is a basis for W, then orthogonal projection
 $\mathbf{y}-\hat{\mathbf{y}}$ is orthogonal to $\hat{\mathbf{y}}_{1}$, shortest distance btw \mathbf{y} and W is $\|\mathbf{y}-\hat{\mathbf{y}}\|$ $\frac{y-y \text { iram-Schmidt: Start with } \mathcal{B}=\left\{\mathbf{u}_{\mathbf{1}}, \cdots \mathbf{u}_{\mathbf{n}}\right\} \text {. Let: }}{\mathbf{v}_{1}=\mathbf{u}_{1}}$
$v_{1}=u_{1}$
$\mathbf{v}_{2}=u_{2}-\left(\frac{u_{2} \cdot v_{1}}{v_{1} \cdot v_{1}}\right) v_{1}$
$\mathrm{v}_{3}=\mathrm{u}_{3}-\left(\frac{\mathrm{u}_{3} \cdot \mathrm{v}_{1}}{\mathrm{v}_{1} \cdot \mathrm{v}_{1}}\right) \mathrm{v}_{1}-\left(\frac{\mathrm{u}_{3} \cdot \mathrm{v}_{2}}{\mathbf{v}_{2} \cdot \mathrm{v}_{2}}\right) \mathrm{v}_{2}$
Then $\left\{\mathbf{v}_{\mathbf{1}} \cdots \mathbf{v}_{\mathbf{n}}\right\}$ is an orthogonal basis for $\operatorname{Span}(\mathcal{B})$, and if $\mathbf{w}_{\mathbf{i}}=\frac{\mathbf{v}_{\mathbf{i}}}{\left\|\mathbf{v}_{\mathbf{i}}\right\|}$ then $\left\{\mathbf{w}_{\mathbf{1}} \cdots \mathbf{w}_{\mathbf{n}}\right\}$ is an orthonormal basis for $\operatorname{Span}(\mathcal{B})$.
$Q R$-factorization: To find Q, apply G-S to columns of A. Then $R=Q^{T} A$ Least-squares: To solve $A \mathbf{x}=\mathbf{b}$ in the least squares-way, solve $A^{T} A \mathbf{x}=A^{T} \mathbf{b}$. Least squares solution makes $\|A \mathbf{x}-\mathbf{b}\|$ smallest.
$x=R^{-1} Q^{T} \mathbf{b}$, where $A=Q R$.
$\frac{\text { Inner product spaces }}{\text { s. well. }} f \cdot g=\int_{a}^{b} f(t) g(t) d t$. G-S applies with this inner product as well.
$\begin{aligned} & \text { Cauchy.Schwarz: }|\mathbf{u} \cdot \mathbf{v}| \leq\|\mathbf{u}\|\|\mathbf{v}\| \\ & \text { Triangle inequality: }\end{aligned}\|\mathbf{u}+\mathbf{v}\| \leq\|\mathbf{u}\|+\|\mathbf{v}\|$

Symmetric matrices $\left(A=A^{T}\right.$)

Has n real eigenvalues, always diagonalizable, orthogonally diagonalizable
$A=P D P^{T}, P$ is an orthogonal matrix, equivalent to symmetry!
Theorem: If A is symmetric, then any two eigenvectors from different eigenspaces are How to orthogonally diagonalize: First diagonalize, then apply G-S on each eigenspace and normalize. Then $P=$ matrix of (orthonormal) eigenvectors, $D=$ matrix of sigenvalues.
Quadratic forms: To find the matrix, put the x_{i}^{2}-coefficients on the diagonal, and evenly stribute the other terms. For example, if the $x_{1} x_{2}-$ term is 6 , then the $(1,2)$ th and Then orthogonally diagonalize $A=P D P^{T}$
Then let $\mathbf{y}=P^{T} \mathbf{x}$, then the quadratic form becomes $\lambda_{1} y_{1}^{2}+\cdots+\lambda_{n} y_{n}^{2}$,

Second-order and Higher-order differential equations

Homogeneous solutions: Auxiliary equation: Replace equation by polynomial, so $y^{\prime \prime}$ becomes r^{3} etc. Then find the zeros (use the rational roots theorem and long division, see the 'Diagonalization-section). 'Simple zeros' give you $e^{r t}$, Repeated zeros (multiplicity m) give you $A e^{r t}+B t e^{r t}+\cdots Z t^{m-1} e^{r t}$, Comple, zeros $r=a+b i$ give you $A e^{a t} \cos (b t)+B e^{a t} \sin (b t)$. Undetermined coefficients: $y(t)=y_{0}(t)+y_{p}(t)$, where y_{0} solves the hom.
eqn. (equation $=0$, and y_{p} is a particular solution. To find y_{p} : If the inhom. term is $C^{m} t^{m} e^{r t}$, then: $y_{p}=t^{s}\left(A_{m} t^{m} \cdots+A_{1} t+1\right) e^{r t}$, where if r is a root of aux with
multiplicity m, then $s=m$ a and if r is not a root, then $s=0$ multiplicity m, then $s=m$, and if r is not a root, then $s=0$. If the inhom term is $C t^{m} e^{a t} \sin (\beta t)$, then: $y_{p}=t^{s}\left(A_{m} t^{m} \ldots+\right.$ $\left.A_{1} t+1\right) e^{a t} \cos (\beta t)+t^{s}\left(B_{m} t^{m} \cdots+B_{1} t+1\right) e^{r t} \sin (\beta t)$.
where $s=m$, if $a+b i$ is also a root of aux with multiplicity $m(s=0$ if not). \cos always goes with \sin and vice-versa, also, you have to look at $a+b i$ as one entity
Variation of
Variation of parameters: First, make sure the leading coefficient (usually the coeff. of $\left.y^{\prime \prime}\right)$ is $=1$. Then $y=y_{0}+y_{p}$ as above. Now suppose
$y_{p}(t)=v_{1}(t) y_{1}(t)+v_{2}(t) y_{2}(t)$.
solutions. Then $\left[\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right]\left[\begin{array}{l}v_{1}^{\prime} \\ v_{2}^{2}\end{array}\right]=\left[\begin{array}{c}0 \\ f(t)\end{array}\right]$. Invert the matrix and solve for v_{1}^{\prime}
and v_{2}^{\prime}, and integrate to get v_{1} and v_{2}, and finally use:
$y_{p}(t)=v_{1}(t) y_{1}(t)+v_{2}(t) y_{2}(t)$.
Useful formulas: $\left[\begin{array}{cc}a & b \\ c & d\end{array}\right]^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]$
$\int \sec (t)=\ln |\sec (t)+\tan (t)|, \int \tan (t)=\ln |\sec (t)|$ $\int \tan ^{2}(t)=\tan (x)-x, \int \ln (t)=t \ln (t)-$
Linear independence: f, g, h are linearly independent if
$a f(t)+b g(t)+c h(t)=0 \Rightarrow a=b=c=0$. To show linear
dependence, do it directly. To show linear independence, form the Wronskine dependence, do it directly. To show linear independence, form the Wronskian: $\widetilde{W}(t)=\left[\begin{array}{cc}f(t) & g(t) \\ f^{\prime}(t) & g^{\prime}(t)\end{array}\right]$ (for 2 functions),
$\widetilde{W}(t)$
$\widetilde{W}(t)=\left[\begin{array}{ccc}f^{\prime}(t) & \begin{array}{c}g(t) \\ g^{\prime}(t) \\ f^{\prime \prime}(t) \\ g^{\prime \prime}(t) \\ h^{\prime}(t) \\ h^{\prime \prime}(t)\end{array}\end{array}\right]$ (for 3 functions). Then pick a point
t_{0} where $\operatorname{det}\left(\widetilde{W}\left(t_{0}\right)\right)$ is easy to evaluate. If $\operatorname{det} \neq 0$, then f, g, h are linearly
independent! Try to look for simplifications before you differentiate. independent! Try to look for simplifications before you differentiate.
Fundamental solution set: If f, g, h are solutions and linearly independ Largest interval of existence: First make sure the leading coefficient equals to 1 . Then look at the domain of each h term. For each domain, consider the part of the interval which contains the initial condition. Finally, intersect the intervals and change any brackets to $\underset{\text { parentheses. }}{ }$ Harmponic osc

Systems of differential equations

$\frac{\text { To solve } \mathbf{x}^{\prime}=A \mathbf{x}: \mathbf{x}(t)=A e^{\lambda_{1} t} \mathbf{v}_{\mathbf{1}}}{\left.\text { are your eigenvalues. } \mathbf{v}_{\mathbf{i}} \text { are your eigenvectors }\right)}+B e^{\lambda_{2} t} \mathbf{v}_{\mathbf{2}}+e^{\lambda_{3} t} \mathbf{v}_{\mathbf{3}}\left(\lambda_{i}\right.$ are your eigenvalues, $\mathbf{v}_{\mathbf{i}}$ are your eigenvectors)
Fundamental matrix: Matrix whose columns are
(the columns are solutions and linearly independent)
Complex eigenvalues If $\lambda=\alpha+i \beta$, and $\mathbf{v}=\mathbf{a}+i \mathbf{b}$. Then:
$\mathbf{x}(t)=A\left(e^{\alpha t} \cos (\beta t) \mathbf{a}-e^{\alpha t} \sin (\beta t) \mathbf{b}\right)+$
$B\left(e^{\alpha t} \sin (\beta t) \mathbf{a}+e^{\alpha t} \cos (\beta t) \mathbf{b}\right)$
Notes: You only need to consider one complex eigenvalue. For real eigenvalues, use the
formula above. Also, $\frac{1}{a+b i}=\frac{a-b i}{a^{2}+b^{2}}$
Generalized eigenvectors if you only find one eigenvector \mathbf{v} (even though there are supposed to be 2), then solve the following equation for $\mathbf{u}:(A-\lambda I)(\mathbf{u})=$ Then: $\mathbf{x}(t)=A e^{\lambda t} \mathbf{v}+B\left(t e^{\lambda t} \mathbf{v}+e^{\lambda t} \mathbf{u}\right)$
$\frac{\text { Undetermined coefficients First find hom. solution. Then for } \mathbf{x}_{\mathbf{p}} \text {, just like regular }}{\text { undetermined coefficients, except that instead of guessing }}$
$\mathbf{x}_{\mathbf{p}}(t)=a e^{t}+b \cos (t)$, you guess $\mathbf{a} e^{t}+\mathbf{b} \cos (t)$, where $\mathbf{a}=\left[\begin{array}{l}a_{1} \\ a_{2}\end{array}\right]$ is ${ }^{\text {a vector. Then plug into } \mathbf{x}^{\prime}}=A \mathbf{x}+\mathbf{f}$ and solve for \mathbf{a} etc. or parameters first hom. solution $\mathbf{x}_{\mathbf{h}}(t)=A \mathbf{x}_{\mathbf{1}}(t)+B \mathbf{x}_{\mathbf{2}}(t)$. Then $\operatorname{sps} \mathbf{x}_{\mathbf{p}}(t)=v_{1}(t) \mathbf{x}_{\mathbf{1}}(t)+v_{2}(t) \mathbf{x}_{\mathbf{2}}(t)$, then solve $\widetilde{W}(t)\left[\begin{array}{l}v_{7}^{\prime} \\ v_{2}\end{array}\right]=\mathbf{f}$ where $\widetilde{W}(t)=\left[\mathbf{x}_{\mathbf{1}}(t) \mid \quad \mathbf{x}_{\mathbf{2}}(t)\right]$. Multiply both sides by $(\widetilde{W}(t))^{-1}$ integrate and solve for $v_{1}(t), v_{2}(t)$, and plug back into $\mathbf{x}_{\mathbf{p}}$. Finally,
$x^{x}=x_{h}+x_{p}$
Matrix exponential $e^{A t}=\sum_{n=0}^{\infty} \frac{A^{n} t^{n}}{n!}$. To calculate $e^{A t}$, either diagonalize: $A=P D P^{-1} \stackrel{n=0}{\Rightarrow} e^{A t} \stackrel{n!}{=} P e^{D t} P^{-1}$, where $e^{D t}$ is a diagonal matrix with diag. entries $e^{\lambda_{i} t}$. Or if A only has one e igenvalue λ with multiplicity m, use $e^{A t}=e^{\lambda t} \sum_{n=0}^{m-1} \frac{(A-\lambda I)^{n} t^{n}}{n!}$. Solution of
$\mathbf{x}^{\prime}=A \mathbf{x}$ is then $\mathbf{x}(t)=e^{A t} \mathbf{c}$, where \mathbf{c} is a constant vector.

Coupled mass-spring system

Case $N=2$
$\begin{aligned} & \text { Case } N=2 \\ & \text { Equation: } \mathbf{x}^{\prime \prime}\end{aligned}=A \mathbf{x}, A=\left[\begin{array}{cc}-2 & 1 \\ 1 & -2\end{array}\right] \quad \begin{aligned} & \text { Proper frequencies: Eigenvalues of } A \text { are: } \lambda=-1,-3 \text {, then proper frequencies }\end{aligned}$ Proper frequencies: Eigenvalues of A are: $\lambda=-$
$\pm i, \pm \sqrt{3} i$ (\pm square roots of eigenvalues)
Proper modes: $\mathbf{v}_{\mathbf{1}}=\left[\begin{array}{c}\sin \left(\frac{\pi}{3}\right) \\ \sin \left(2 \frac{\pi}{3}\right)\end{array}\right]=\left[\begin{array}{l}\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2}\end{array}\right]$,
$\mathbf{v}_{\mathbf{2}}=\left[\begin{array}{l}\sin \left(2 \frac{\pi}{3}\right) \\ \sin \left(4 \frac{\pi}{3}\right)\end{array}\right]=\left[\begin{array}{c}\frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2}\end{array}\right]$
$\underline{\text { Case } N=3}$
$\begin{aligned} & \text { Equation: } \mathbf{x}^{\prime \prime}\end{aligned}=A \mathbf{x}, A=\left[\begin{array}{ccc}-2 & 1 & 0 \\ 1 & -2 & 1 \\ 0 & 1 & -2\end{array}\right]$
Proper frequencies: Eigenvalues of $A: \lambda=-2,-2-\sqrt{2},-2+\sqrt{2}$, then
proper frequencies $[\pm \sqrt{2} i, \pm(\sqrt{2+\sqrt{2}}) i, \pm(\sqrt{2-\sqrt{2}}) i$
Proper modes: $\mathbf{v}_{\mathbf{1}}=\left[\begin{array}{l}\sin \left(\frac{\pi}{4}\right) \\ \sin \left(2 \frac{\pi}{4}\right) \\ \sin \left(3 \frac{\pi}{4}\right)\end{array}\right]=\left[\begin{array}{l}\frac{\sqrt{2}}{2} \\ 1 \\ \frac{\sqrt{2}}{2}\end{array}\right], \mathbf{v}_{\mathbf{2}}=\left[\begin{array}{l}\sin \left(2 \frac{\pi}{4}\right) \\ \sin \left(4 \frac{\pi}{4}\right. \\ \sin \left(6 \frac{\pi}{4}\right)\end{array}\right]=$
$\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right], \mathbf{v}_{\mathbf{3}}=\left[\begin{array}{l}\sin \left(3 \frac{\pi}{4}\right) \\ \sin \left(6 \frac{\pi}{4}\right. \\ \sin \left(3 \frac{\pi}{4}\right)\end{array}\right]=\left[\begin{array}{c}\frac{\sqrt{2}}{2} \\ -1 \\ \frac{\sqrt{2}}{2}\end{array}\right]$

Partial differential equations

$\frac{\text { Full Fourier series: } f \text { defined on }(-T, T) \text { : }}{f(x) \sim \sum_{m=0}^{\infty}\left(a_{m} \cos \left(\frac{\pi m x}{T}\right)+b_{m} \sin \left(\frac{\pi m x}{T}\right)\right) \text {, where: }}$
$a_{0}=\frac{1}{2 T} \int_{-T}^{T} f(x) d x$
$a_{m}=\frac{1}{T} \int_{-T}^{T} f(x) \cos \left(\frac{\pi m x}{T}\right)$
$b_{0}=0$
$b_{m}=\frac{1}{T} \int_{-T}^{T} f(x) \sin \left(\frac{\pi m x}{T}\right)$
Cosine series: f defined on $(0, T): f(x) \sim \sum_{m=0}^{\infty} a_{m} \cos \left(\frac{\pi m x}{T}\right)$,
$a_{0}=\frac{2}{2 T} \int_{0}^{T} f(x) d x$ (not a typo)
$a_{m}=\frac{2}{T} \int_{0}^{T} f(x) \cos \left(\frac{\pi m x}{T}\right)$
Sine series: f defined on $(0, T): f(x) \sim \sum_{m=0}^{\infty} b_{m} \sin \left(\frac{\pi m x}{T}\right)$, where $b_{0}=0$
$b_{m}=\frac{2}{T} \int_{0}^{T} f(x) \sin \left(\frac{\pi m x}{T}\right)$
Tabular integration: (IBP: $\int f^{\prime} g=f g-\int f g^{\prime}$) To integrate $\int f(t) g(t) d t$ here f is a polynomial, make a table whose first row is $f(t)$ and $g(t)$. Then inferentiate f as many times until you get 0 , and antidifferentiate as many times until it
ligns with the 0 for f. Then multiply the diagonal terms and do + first term - secon erm etc.
Orthogonality formulas: $\int_{-}^{T}{ }_{T} \cos \left(\frac{\pi m x}{T}\right) \sin \left(\frac{\pi n x}{T}\right) d x=0$
$\int_{T}^{T} T^{\cos \left(\frac{\pi m x}{T}\right)} \cos \left(\frac{\pi n x}{T}\right) d x=0$ if $m \neq n$
$\int_{-T}^{T} \sin \left(\frac{\pi m x}{T}\right) \sin \left(\frac{\pi n x}{T}\right) d x=0$ if $m \neq n$
Convergence: Fourier series \mathcal{F} goes to $f(x)$ is f is continuous at x, and if f has a
jump at x, \mathcal{F} goes to the average of the jumps. Finally, at the endpoints, \mathcal{F} goes average of the leffright endpoints.
Heat/Wave equations:
Step 1: Suppose $u(x, t)=X(x) T(t)$, plug this into PDE, and group X-terms and T-terms. Then $\frac{X^{\prime \prime}(x)}{X(x)}=\lambda$, so $X^{\prime \prime}=\lambda X$. Then find a differential equation for T. Note: If you have an α-term, put it with T.
equation for T. Note: If you have an α-term, put it with T.
Step 2 Deal with $X^{\prime \prime} \xlongequal{=} \lambda X$. Use boundary conditions to find $X(0)$ etc. (if you have $\frac{\partial u}{\partial x}$, you might have $X^{\prime}(0)$ instead of $X(0)$).
Step 3: Case 1: $\lambda=\omega^{2}$, then $X(x)=A e^{\omega x}+B e^{-\omega x}$, then find $\omega=0$, contradiction. Case 2: $\lambda=0$, then $X(x)=A x+B$, then eihter find $X(x)=0\left(\right.$ contradiction), or find $X(x)=A$. Case 3: $\lambda=-\omega^{2}$, then
$X(x)=A \cos (\omega x)+B \sin (\omega x)$. Then solve for ω, usually $\omega=\frac{\pi m}{T}$ Also, if case 2 works, should find cos, if case 2 doesn't work, should find sin. Finally, $\lambda=-\omega^{2}$, and $X(x)=$ whatever you found in 2) w/o the constant.
Step 4: Solve for $T(t)$ with $T^{\prime}=\lambda T \Rightarrow T(t)={\widetilde{A_{m}} e^{\lambda t} \text {. And for the wave equation: }}^{\prime \prime}$
$T^{\prime \prime}=\lambda T \Rightarrow T(t)=A_{m} \cos (\omega t)+B_{m} \sin (\omega t)$.
Step 5: Then $u(x, t)=\sum_{m=0}^{\infty} T(t) X(x)$ (if case 2 works
$u(x, t)=\sum_{m=1}^{\infty} T(t) X(x)$ (if case 2 doesn't work!)
Step 6: Use $u(x, 0)$, and plug in $t=0$. Then use Fourier cos
ust 'compare', i.e. if $u(x, 0)=4 \sin (2 \pi x)+3 \sin (3 \pi x)$, then $\bar{A}_{2}=$ $\widehat{A_{3}}=3$, and $\widehat{A_{m}}=0$ if $m \neq 2,3$.
Step 7: (only for wave equation): Use $\frac{\partial u}{\partial t} u(x, 0)$: Differentiate Step 5 with respeci to t and set $t=0$. Then use Fourier cosine or series or 'compare'
Nonhomogeneous heat equation:

$$
\left\{\begin{array}{c}
\frac{\partial u}{\partial t}=\beta \frac{\partial^{2} u}{\partial x^{2}}+P(x) \\
u(0, t)=U_{1}, \\
u(x, 0)=f(x)
\end{array} \quad u(L, t)=U 2\right.
$$

$\begin{aligned} u(x, 0) & =f(x) \\ \text { Then } u(x, t) & =v(x)+w(x, t) \text {, where: }\end{aligned}$
$\left[U_{2}-U_{1}+\int_{0}^{L} \int_{0}^{z} \frac{1}{\beta} P(s) d s d z\right] \frac{x}{L}+U_{1}-\int_{0}^{x} \int_{0}^{z} \frac{1}{\beta} P(s) d s d z$ and $w(x, t)$ solves the hom. eqn:

$$
\begin{aligned}
& \frac{\partial w}{\partial t}=\beta \frac{\partial^{2} w}{\partial x^{2}} \\
& w(0, t)=0,
\end{aligned}
$$

$\begin{gathered}\begin{array}{c}w(0, t)=0, \\ u(x, 0) \\ f(x) \\ 0\end{array} \quad w(x)\end{gathered} \quad w(L, t)=0$
D'Alembert's formula: ONLY works for wave equation and $-\infty<x<\infty$:
$u(x, t)=\frac{1}{2}(f(x+\alpha t)+f(x-\alpha t))+\frac{1}{2 \alpha} \int_{x-\alpha t}^{x+\alpha t} g(s) d s$, where $u_{t t}=\alpha^{2} u_{x x}, u(x, 0)=f(x), \frac{\partial u}{\partial t} u(x, 0)=g(x)$. The integral just means 'antidifferentiate and plug in'

Laplace equation:

Same as for Heat/Wave, but $T(t)$ becomes $Y(y)$, and we
$Y^{\prime \prime}(y)=-\lambda Y(y)$. Also, instead of writing
$Y(y)=\widehat{A_{m}} e^{\omega y}+\widehat{B_{m}} e^{-\omega y}$, write
$Y(y)=\widehat{A_{m}} \cosh (\omega y)+\widehat{B_{m}} \sinh (\omega y)$. Remember $\cosh (0)=1$,
$\sinh (0)=0$

